468x60 Ads

This is an example of a HTML caption with a link.

Matahari Reaktor Fusi Termonuklir Raksasa

0 komentar

ilustrasi Reaksi Fusi pada matahari (tampak luar)

Matahari, setiap detiknya, mengeluarkan energi sebesar seluruh energi yang digunakan seluruh umat manusia sepanjang sejarahnya. Energi plasma hidrogen raksasa sebesar 380 Milyar-milyar Mega-Watt (380^26 MW), per detiknya. Inilah energi yang dikenal sebagai energi Fusi Nuklir (Nuclear Fusion), The power of the Sun. Dan para ilmuwan dunia sedang berusaha mendapatkannya.

Dan ini adalah energi yang membuat bintang-bintang raksasa di alam semesta terbakar selama milyaran tahun. Energi terdahsyat, di seluruh alam semesta.

Sebuah percobaan besar sedang dilakukan di kota kecil Cadarache di ujung selatan Perancis dalam sebuah proyek bernama ITER. Disini atom Deuterium dan Tritium dilebur dengan panas mencapai 150 juta derajat Celcius, nyaris 10 kali panas inti Matahari. Wadah peleburannya dilindungi oleh medan magnet Tokamak sehingga tidak meleleh.

Hebatnya adalah bahwa Deuterium bisa dihasilkan dari air laut biasa, dan Tritium dibentuk dari Lithium yang bisa didapat dari batu alam. Energi terdahsyat di seluruh alam semesta dari Air dan Batu alam.

Kalau para ilmuwan ini berhasil menciptakannya, maka seluruh dunia akan mempunyai sumber energi baru yang dahsyat menggantikan minyak bumi. Energi ini akan begitu besar dan efisien, tidak terbatas, sangat murah, serta ramah lingkungan.

(Note : penggunaan nanoteknologi dalam sel photovoltaic tenaga surya, nanocrystal, juga dikatakan memiliki potensi energi super besar yang mampu menggantikan minyak bumi).

“What would fusion mean? Endless, cheap energy. Amazing Star Trek, space travel possibilities. Fame, fortune, and undoubtedly a Nobel or two for the lucky scientist”.
The Observer, Desember 2000

Tokamak Fusion Test Reactor

0 komentar

TFTR 1989 Side view 
of the TFTR Inside TFTR
Tokamak Fusion Test Reactor, 1989 Side view of the TFTR Inside the Tokamak Fusion Test Reactor
TFTR Achievements TFTR Parameters TFTR Publications

The Tokamak Fusion Test Reactor (TFTR) operated at the Princeton Plasma Physics Laboratory (PPPL) from 1982 to 1997. TFTR set a number of world records, including a plasma temperature of 510 million degrees centigrade -- the highest ever produced in a laboratory, and well beyond the 100 million degrees required for commercial fusion. In addition to meeting its physics objectives, TFTR achieved all of its hardware design goals, thus making substantial contributions in many areas of fusion technology development. 

In December, 1993, TFTR became the world's first magnetic fusion device to perform extensive experiments with plasmas composed of 50/50 deuterium/tritium -- the fuel mix required for practical fusion power production. Consequently, in 1994, TFTR produced a world-record 10.7 million watts of controlled fusion power, enough to meet the needs of more than 3,000 homes. These experiments also emphasized studies of behavior of alpha particles produced in the deuterium-tritium reactions. The extent to which the alpha particles pass their energy to the plasma is critical to the eventual attainment of sustained fusion. 

In 1995, TFTR scientists explored a new fundamental mode of plasma confinement -- enhanced reversed shear. This new technique involves a magnetic-field configuration which substantially reduces plasma turbulence.

How Nuclear Fusion Reactors Work

0 komentar

Fusion Reactors: Magnetic Confinement

There are two ways to achieve the temperatures and pressures necessary for hydrogen fusion to take place:
  • Magnetic confinement uses magnetic and electric fields to heat and squeeze the hydrogen plasma. The ITER project in France is using this method.
  • Inertial confinement uses laser beams or ion beams to squeeze and heat the hydrogen plasma. Scientists are studying this experimental approach at the National Ignition Facility of Lawrence Livermore Laboratory in the United States.


Let's look at magnetic confinement first. Here's how it would work:
Microwaves, electricity and neutral particle beams from accelerators heat a stream of hydrogen gas. This heating turns the gas into plasma. This plasma gets squeezed by super-conducting magnets, thereby allowing fusion to occur. The most efficient shape for the magnetically confined plasma is a donut shape (toroid).

A reactor of this shape is called a tokamak. The ITER tokamak will be a self-contained reactor whose parts are in various cassettes. These cassettes can be easily inserted and removed without having to tear down the entire reactor for maintenance. The tokamak will have a plasma toroid with a 2-meter inner radius and a 6.2-meter outer radius.

Let's take a closer look at the ITER fusion reactor to see how magnetic confinement works.

Sekilas Tentang Tokamak dan Fusi Thermonuklir

0 komentar

Pendahuluan
Selama manusia mendiami bumi, selama itu pulalah manusia membutuhkan energi bagi kehidupannya. Konsumsi energi oleh manusia selalu bertambah seiring dengan bertambahnya penghuni bumi dan meningkatnya  kemampuan teknologi manusia. Dengan kemampuannya manusia selalu mencoba mencari alternatif-alternatif penyelesaian dalam persoalan keberlangsungan hidupnya termasuk dalam sektor energi.

Salah satu impian para ilmuwan dan teknologi adalah bagaimana mencontoh reaksi fusi yang terjadi di matahari, di muka bumi sebagai sumber energi. Untuk mendapatkan tipe reaksi yang berlangsung di matahari dalam suatu “mesin energi” di bumi merupakan mimpi sejak awal petualangan nuklir untuk energi. Solusi yang kelihatannya lebih mudah adalah melakukan penggabungan 2 isotop hidrogen, deutrium (inti yang mengandung 1 proton dan 1 neutron) dan tritium ( 1 proton dan 2 neutron).

Masalah yang muncul adalah bagaimana mendapatkan panas yang cukup tinggi agar deutrium dan tritium dapat bergabung (fusi), bagaimana mengontrol reaksi-reaksi fusi tersebut dalam kondisi diadaptasikan dengan eksploitasi industrial. Bagaimana panas yang telah diperoleh dalam kondisi plasma dapat dipertahankan agar reaksi terus berlangsung sambil melepaskan energi yang dapat bermanfaat?

Plasma Tokamak
Plasma merupakan campuran partikel-partikel bermuatan, maka plasma dapat dikontrol oleh medan magnet.  Medan magnet yang sesuai akan dapat digunakan untuk mengurung plasma dengan kerapatan yang cukup tinggi dan kesetabilan energi dengan waktu yang cukup panjang. Untuk pengurungan plasma dengan medan magnet yang terkemuka saat ini adalah teknik Plasma Tokamak (tokamak suatu akronim bahasa rusia dari “toroidalnya kamera ve magnetnaya katushka” = ”toroidal chamber with magnetic coil”.  Teknik ini diusulkan pertama kali oleh dua fisikawan Rusia,  keduanya pemenang hadiah nobel Andrei Sakharov dan Igor Tamm.


Konsep plasma tokamak diusulkan dalam kaitannya dengan ide untuk mengontrol reaksi fusi nuklir.  Dan kini teknik plasma tokamak merupakan satu-satunya model untuk mengusahakan terjadinya reaksi fusi termonuklir.  Reaksi fusi terjadi jika inti-inti dari unsur-unsur ringan bergabung menjadi suatu unsur yang lebih berat

Sebuah mega proyek plasma Tokamak telah direncanakan oleh gabungan Uni-Eropa Rusia, Amerika Serikat dan Jepang dan akan diputuskan di mana akan dilakukan pembangunannya pada tahun 1998.  Proyek itu bernama International Thermonuclear Experimental Reactor (ITER).  Rencananya ITER akan mengkombinasikan beberapa teknik unggul dari Tokamak yang telah dilakukan di negara-negara anggota.

Plasma Tokamak dan Reaktor Fusi
Konsep plasma tokamak diusulkan dalam kaitan dengan ide untuk mengontrol reaksi fusi nuklir. Yang paling mudah (secara teoretis) adalah reaksi antara  dua isotop hidrogen (deutrium dan tritium) seperti reaksi R1. Reaksi ini  selain membebaskan energi juga melepaskan neutron cepat dan pembentukan inti atom helium (partikel a ). Dalam suatu reaktor fusi, zona reaksi dikelilingi oleh suatu selimut dan selimut ini merupakan daerah konservasi energi (energi terbebaskan dari reaksi fusi dan energi kinetik neutron) menjadi energi panas.

Kriteria Lawson
Agar temperatur tinggi (T) dapat dipertahankan, kosentrasi (densitas) inti  n harus cukup tinggi dan kondisi ini harus bertahan selama waktu pengungkungan energi t cukup panjang. Suatu formula sederhana yang dikenal dengan Kriteria Lawson diusulkan pada tahun 1957 oleh Lawson, menunjukkan jika inti-inti yang mengalami penggabungan  adalah deutrium-tritium maka perkalian nTt harus lebih besar dari 6 . 1021 dengan satuan n adalah partikel per meter kubik, t dalam detik, dan T dalam keV. Kriteria Lawson inilah yang menjadi standar unjuk kerja dari suatu reaktor Fusi termonuklir. Berbagai reaktor di dunia terus menunjukkan perkembangan tiga perkalian fusi (triple fusion product).

Pembangkit plasma dalam Reaktor Fusi themonuklir
Pada umumnya  untuk membangkitkan plasma digunakan pemanasan radio frekuensi (Radio frequency heating). Sistem pemanasan ini dikenal dengan nama Ion Cyclotron Resonance Frequency ( ICRF). ICRF dioperasikan pada rentang frekuensi 23-57 MHz. Sebagai contoh yang digunakan oleh JET pemanasan ICRF terdapat 8 unit modul identik, setiap unit terdiri dari sebuah tandem amplifier, seperangkat tranmisi koaksial  tersusun  menjadi elemen-elemen. Elemen-elemen ini merupakan antena yang ditempatkan tepat pada dinding reaktor. Kedelapan generator RF pada JET memproduksi daya maksimum sebesar 32 MW. Daya tersebut yang digunakan untuk mengionisasi gas deutrium dan tritium menjadi plasma dan mempertahankan kondisi plasma. Daya bersih yang digunakan JET untuk pemanasan plasma ini sekitar 22,7 MW.

Realisasi Energi Fusi untuk Pembangkit Tenaga Listrik
Reaktor Fusi themonuklir yang dikembangkan kini di seluruh dunia masih menggunakan model Plasma Tokamak. Tidak terdapat perubahan yang berarti kecuali beberapa kajian yang selalu ditingkatkan untuk mendapatkan unjuk kerja yang semakin handal.

Energi yang dihasilkan oleh reaksi fusi akan dikonversikan menjadi beberapa bentuk energi lain seperti energi untuk neutron cepat dan partikel alpha (inti atom Helium) serta energi sisa. Energi sisa ini sebagian digunakan untuk menahan kondisi plasma tokamak pada kondisi kriteria Lawson. Sebagian lain dari sisa energi tersebut akan dikonversikan menjadi energi panas melalui selimut (blanket) di sekitar inti reaktor. Selimut ini memanfaatkan energi neutron cepat menjadi energi panas. Panas yang tersimpan pada selimut melalui sistem pertukaran panas digunakan untuk menguapkan air. Uap air ini yang digunakan untuk memutar turbin generator, sehingga energi listrik dapat dihasilkan seperti yang lazim pada cara konvensional.

Permasalahan yang masih harus mendapatkan penyelesaian serius adalah tidak mampunya sistem reaktor plasma tokamak tetap menahan keadaan plasma pada kondisi kriteria Lawson ketika sumber daya pemanasan plasma (ICRF) diputus. Di dunia hanya satu kali terjadi di Joint European Torus (JET) dan berlangsung hanya selama dua menit.

Selesai ditulis di Surabaya pada 17 November 2011
Oleh : Muhammad Nur

Reaksi Fusi sebagai Sumber Energi Matahari

0 komentar


Pendahuluan

Matahari yang setiap hari memancarkan sinarnya ke bumi dan juga ke planet-planet lain yang ada pada tatasurya kita, adalah sumber kehidupan bagi semua makhluk hidup yang ada di bumi ini. Pemancaran energi matahari yang sampai ke bumi telah berlangsung terus menerus sejak kurang lebih 5.000.000.000 tahun yang lalu dan akan terus berlangsung sampai waktu yang belum diketahui. Energi matahari yang seakan-akan tak akan habis tersebut, menarik untuk diamati karena sumber energi matahari tersebut ternyata berasal dari reaksi thermonuklir yang sangat dahsyat dan menghasilkan panas dalam orde jutaan derajat celcius. Oleh karena sumber energi matahari berasal dari reaksi thermonuklir, berarti energinya bisa berkurang dan pada akhirnya akan habis manakala reaktan yang terlibat dalam reaksi thermonuklir telah habis bereaksi. Apabila reaktan yang bereaksi telah habis, maka matahari akan padam dan ini berarti kematian bagi semua makhluk hidup yang ada di bumi ini. Tulisan ini akan membahas bagaimana reaksi thermonuklir bisa terjadi di matahari, berapa panas yang dihasilkannya dan kapan reaksi thermonuklir akan berhenti atau kapan matahari akan padam. 
 
 

Suhu Matahari

Menurut para ahli astronomi modern yang mempelajari keberadaan bintang-bintang di jagat raya ini, matahari kita adalah salah satu bintang diantara 100.000.000 bintang yang ada pada suatu kelompok atau galaksi yang disebut dengan kelompok bintang "Milky Way". Matahari sebenarnya adalah suatu bintang yang besarnya termasuk rata-rata dibandingkan dengan ukuran bintang-bintang lainnya. Banyak bintang lainnya yang ukurannya jauh lebih besar dari pada ukuran matahari kita. Diameter matahari 1.400.000 kilometer yang berarti 100 kali diameter bumi. Gravitasi matahari lebih kuat dari pada gravitasi di bumi, yaitu 28 kali lebih kuat dari pada gravitasi bumi. Cahaya bintangpun ada yang jauh lebih terang yang berarti suhunya juga jauh lebih panas dari pada suhu matahari kita. Matahari tampak sangat besar dibandingkan dengan bintang-bintang yang tersebar di jagat raya ini karena letaknya yang relatif sangat dekat dengan bumi, yaitu sekitar 150.000.000 kilometer. Bintang yang paling dekat dengan bumi adalah bintang Alpha Centauri yang jaraknya 40.000.000.000.000 kilometer dari bumi. Bagaimana kedudukan matahari terhadap bumi dan planet-planet lainnya dalam tata surya kita dapat dilihat pada Gambar 1. Matahari sebagai dapur nuklir menghasilkan panas yang sangat amat tinggi hasil dari reaksi thermonuklir yang terjadi di matahari. Suhu pada pusat matahari (pada inti) diperkirakan mencapai lebih dari 14.000.000 ºC, sedangkan suhu permukaannya relatif dingin, yaitu sekitar 5.000 - 6.000 ºC. Struktur matahari terdiri atas beberapa bagian, yaitu yang ada di pusat disebut "inti matahari", kemudian bagian antara inti matahari sampai dengan permukaan matahari disebut "photosphere". Pada permukaan terdapat bagian yang disebut dengan "sunspots" yang tampak lebih gelap, karena suhunya memang relatif lebih dingin dibandingkan dengan bagian lain. Sunspots bersuhu sekitar 4000 ºC, lebih dingin bila dibandingkan dengan suhu pada permukaan matahari, sehingga wajar bila tampak lebih gelap kalau dilihat dengan "coronagraph". 

Atmosfer Matahari

Atmosfir matahari terletak di atas permukaan matahari yang sebagian besar berupa gas Hidrogen. Atmosfir matahari terdiri atas 2 bagian utama, yaitu "chromospher" dan "corona". Bagian chromosphere dapat mencapai ketebalan 12.000 kilometer dari permukaan matahari, sedangkan bagian corona tampak bagaikan mahkota berwarna putih yang melingkari matahari. Corona dapat mencapai ketinggian ratusan ribu bahkan dapat sampai jutaan kilometer dari permukaan matahari.

Suhu pada chromosphere dan pada corona sangat jauh berbeda. Chromosphere yang terletak pada permukaan matahari bersuhu kurang lebih 5.000 ºC, sedangkan suhu pada daerah corona dapat mencapai sekitar 10.000 - 100.000 ºC, atau bahkan dapat lebih tinggi lagi. Suhu corona yang jauh lebih panas dari pada suhu chromosphere, padahal letaknya lebih jauh dari inti matahari sempat menimbulkan pertanyaan diantara para ahli astronomi dan astrofisika. Suhu yang lebih tinggi pada bagian corona ternyata disebabkan karena adanya "kejutan gelombang yang sangat kuat" yang berasal dari gerakan turbulen photosphere yang memanaskan lapisan gas pada corona. Selain dari itu, pada permukaan chromosphere sering terjadi lidah api akibat letusan ataupun ledakan gas yang ada pada permukaan chromosphere. Letusan atau ledakan yang menimbulkan lidah api ini sering disebut dengan "prominence". Lidah api ini dapat mencapai ketinggian ratusan ribu kilometer dari permukaan chromosphere. Prominence ini dapat dilihat jelas pada saat terjadi gerhana matahari total. 

Peristiwa lain yang terjadi pada permukaan chromosphere adalah timbulnya filament gas akibat gerakan gas chromosphere yang panas. Filament gas ini tampak pada permukaan chromosphere sebagai sel-sel kasar yang disebut "supergranulation". Peristiwa-peristiwa tersebut di atas terjadi silih berganti yang menyebebkan timbulnya "plage" dan "flare". Plage adalah keadaan matahari pada saat panas dan bercahaya terang. Sedangkan flare adalah semburan energi tinggi dari permukaan matahari, berupa radiasi partikel sub atomik. Radiasi partikel sub atomik ini dapat sampai ke atmosfir bumi dan memicu terjadinya reaksi inti yang merupakan sumber radiaasi kosmogenis.

Reaksi Thermonuklir

Sudah sejak lama orang memikirkan dari mana asal energi matahari yang begitu panas dan setiap hari dipancarkan ke bumi, namun sampai saat ini belum juga habis sumber energi tersebut. Sampai dengan pertengahan abad ke 19, pada saat orang belum mengenal reaksi nuklir, orang masih menganggap bahwa energi matahari berasal dari bola api besar yang sangat panas. Kalau benar bahwa matahari berasal dari bola api besar, lantas timbul pertanyaan apa yang menjadi bahan bakar bola api tersebut? Para ilmuwan pada saat itu belum bisa menjawab dengan tepat. Mungkinkah kayu, batubara, minyak atau bahan bakar lainnya yang terdapat di matahari yang dibakar berdasarkan reaksi kimia biasa sehingga timbul bola api besar tersebut? Kalau benar bahan-bahan tersebut dibakar untuk menghasilkan energi matahari, maka berdasarkan perhitungan reaksi kimia, energi yang dihasilkan hanya dapat bertahan beberapa ribu tahun saja. Setelah itu matahari akan padam. Padahal matahari telah memancarkan energinya sejak ratusan juta bahkan orde milyard tahun yang lalu. Dengan demikian maka anggapan bahwa sumber energi matahari tersebut berasal dari kayu, batubara, minyak atau bahan bakar lainnya adalah tidak benar. Para ahli astronomi dan juga astrofisika pada saat ini telah memperkirakan bahwa unsur-unsur kimia yang ada di bumi juga terdapat di matahari. Akan tetapi sebagian besar unsur kimia yang terdapat di matahari tersebut, sekitar 80% berupa gas Hidrogen. Sedangkan unsur kedua yang banyak terdapat di matahari adalah gas Helium, kurang lebih sebanyak 19 % dari seluruh massa matahari. Sisanya yang 1 % terdiri atas unsur-unsur Oksigen, Magnesium, Nitrogen, Silikon, Karbon, Belerang, Besi, Sodium, Kalsium, Nikel serta beberapa unsur lainnya. Unsur-unsur kimia tersebut bercampur menjadi satu dalam bentuk gas sub atomik yang terdiri atas inti atom, elektron, proton, neutron dan positron. Gas sub atomik tersebut memancarkan energi yang amat sangat panas yang disebut "plasma". Energi matahari dipancarkan ke bumi dalam berbagai macam bentuk gelombang elektromagnetis, mulai dari gelombang radio yang panjang maupun yang pendek, gelombang sinar infra merah, gelombang sinar tampak, gelombang sinar ultra ungu dan gelombang sinar -x. Secara visual yang dapat ditangkap oleh indera mata adalah sinar tampak, sedangkan sinar infra merah terasa sebagai panas. Bentuk gelombang elektromagnetis lainnya hanya dapat ditangkap dengan bantuan peralatan khusus, seperti detektor nuklir berikut piranti lainnya. Pada saat matahari mengalami plage yang mengeluarkan energi amat sangat panas, kemudian diikuti terjadinya flare yaitu semburan partikel sub atomik keluar dari matahari menuju ke ruang angkasa, maka pada sistem matahari diperkirakan telah terjadi suatu reaksi thermonuklir yang sangat dahsyat. Keadaan ini diduga pertama kali pada tahun 1939 oleh seorang ahli fisika Amerika keturunan Jerman bernama Hans Bethe. Menurut Bethe, energi matahari yang amat sangat panas tersebut disebabkan oleh karena terjadi reaksi fusi atau penggabungan inti ringan menjadi inti yang lebih berat. Reaksi thermonuklir yang berupa reaksi fusi tersebut adalah penggabungan 4 inti Hidrogen menjadi inti Helium, berdasarkan persamaan reaksi inti berikut ini: 
 
(H1 + H1 -> H2 + Beta+ + v + 0,42 MeV) x 2
(H1 + H2 -> He3 + Gamma + 5,5 MeV) x 2
He3 + He3 -> He4 + 2H1 + 12,8 MeV 
---------------------------------------- +
H1 -> He4 + 2Beta+ + 2Gamma + 2v + 24,64 MeV 


Menurut Bethe, reaksi inti yang serupa reaksi fusi tersebut di atas, dapat menghasilkan energi panas yang amat sangat dahsyat. Selain dari itu, karena sebagian besar massa matahari tersebut tersusun oleh gas Hidrogen (80%) dan gas Helium (19%), maka masih ada kemungkinan terjadinya reaksi fusi lain berdasarkan reaksi rantai proton-proton sebagai berikut:

H1 + H1 -> H2 + Beta+ + v 
H1 + H2 -> He3 + Gamma
He3 + He4 -> Be7 + Gamma
Be7 + Beta+ -> Li7 + Gamma + v
------------------------------------ +
Li7 + H1 -> He4 + He4


Terbentuknya gas Helium berdasarkan reaksi thermonuklir tersebut di atas juga menghasilkan energi yang amat sangat panas. Kemungkinan lain, gas Helium juga dapat terbentuk melalui reaksi nuklir berikut ini : 

 Be7 + H1 -> B8 + Gamma
B8 -> Be8 + Beta+ + v 
Be8 -> He4 + He4


Walaupun reaksi inti tersebut di atas sudah dapat menghasilkan energi yang amat sangat panas, ternyata masih ada kemungkinan lain untuk terjadinya reaksi thermonuklir matahari yang menghasilkan energi yang jauh lebih dahsyat dan lebih panas lagi. Reaksi thermonuklir tersebut akan mengikuti reaksi inti rantai Karbon - Nitrogen sebagai berikut: 

C12 + H1 -> N13 + Gamma
N13 -> C13 + Beta+ + v
C13 + H1 -> N14 + Gamma
N14 + H1 -> O15 + Gamma
O15 -> N15 + Beta+ + v
N15 + H1 -> C12 + He4


Reaksi ratai Karbon - Nitrogen tersebut di atas, menghasilkan panas yang jauh lebih panas dari pada reaksi rantai Proton - Proton maupun reaksi fusi Hidrogen menjadi Helium. Reaksi-reaksi thermonuklir tersebut di atas dapat terjadi di matahari dan juga di bintang-bintang yang tersebar di jagat raya ini. Reaksi thermonuklir sejauh ini dianggap sebagai sumber energi matahari maupun energi bintang. Bintang yang bersinar lebih terang dari pada matahari kita yang berarti pula bahwa suhunya jauh lebih panas, maka reaksi thermonuklir yang terjadi pada bintang tersebut pada umumnya akan mengikuti reaksi rantai Karbon - Nitrogen.

Kapan Matahari Akan Padam?

Pertanyaan kapan matahari akan padam adalah suatu pertanyaan yang sulit dijawab dengan pasti, apalagi kalau harus membuktikan kebenarannya. Namun sama halnya dengan keingintahuan manusia untuk mengetahui berapa umur bumi atau kapan terbentuknya bumi ini, maka para ahlipun berusaha dengan akalnya untuk memperkirakan kapan matahari akan padam. Seperti telah diterangkan di muka, bahwa matahari akan padam manakala reaksi thermonuklir di matahari telah berhenti. Apabila matahari padam, maka kehidupan di muka bumi akan berhenti. Secara empiris telah dapat dibuktikan bahwa ada bintang yang pada mulanya bersinar terang, akan tetapi kemudian sinarnya makin redup dan akhirnya padam. Keadaan ini telah direkam oleh teleskop angkasa luar hubble. Atas dasar ini maka dapat saja matahari pada suatu saat akan padam. Seorang fisikawan Jerman, Hermann von Helmholtz, pada tahun 1825 mengamati perkembangan matahari yang ternyata diameter matahari setiap tahunnya menyusut 85 m. Kalau pengamatan Helmholtz benar, maka berdasarkan perhitungan penyusutan diameter matahari, umur matahari hanya akan bertahan untuk waktu 20.000.000 sampai dengan 25.000.000 tahun sejak matahari mengalami penyusutan. Untuk kurun waktu itu, teori Helmholtz ini cukup memuaskan para ilmuwan, sebelum akhirnya digugurkan oleh teori reaksi thermonuklir yang masih bertahan sampai saat ini. Atas dasar teori thermonuklir sudah barang tentu teori Helmholtz menjadi tidak benar, karena dalam kenyataannya matahari telah bersinar sejak orde 5.000.000.000 tahun yang lalu atau bahkan lebih dari itu, suatu umur yang melebihi perkiraan Helmholtz. Reaksi thermonuklir yang dikemukakan oleh Hans Bethe seperti yang telah diuraikan di muka, sebenarnya mirip dengan reaksi kimia konvensional dalam arti bahwa reaksi masih dapat berlangsung selama masih tersedia unsur atau reaktan yang menyebabkan terjadinya proses reaksi thermonuklir tersebut. Pada reaksi thermonuklir yang terjadi di matahari, sebagai reaktan utama adalah gas Hidrogen. Para ahli astronomi dan astrofisika berpendapat bahwa dengan bertambahnya umur matahari, maka pemakaian Hidrogen untuk reaksi thermonuklir dalam rangka mendapatkan energi yang amat sangat panas makin bertambah. Pada peristiwa ini energi yang dihasilkan oleh reaksi thermonuklir juga bertambah, sehingga energi radiasi yang dipancarkan matahari juga bertambah. Hal ini berarti pula suhu atmosfir bumi akan naik dan bumi akan terasa makin panas. 
 
Apabila pendapat para ahli astronomi dan astrofisika tersebut benar, yaitu dengan bertambahnya umur matahari akan membuat persediaan gas Hidrogen pada permukaan matahari berkurang, maka jelas bahwa cepat atau lambat matahari pada akhirnya akan padam. Berdasarkan teori ini energi radiasi matahari diperkirakan masih dapat bertahan untuk jangka waktu kurang lebih 10.000.000.000 tahun lagi, setelah itu matahari padam. Contohnya adanya bintang yang pada saat ini sedang dalam proses menuju ke keadaan padam, telah dapat direkam gambarnya oleh teleskop ruang angkasa Hublle. Hal ini secara empiris menunjukkan kemungkinan yang sama dapat terjadi pada matahari kita. Namu apa yang terjadi akan terjadi sebelum waku 10.000.000.000. tahun tersebut terjadi? Secara teori dalam perjalanan menuju waktu 10.000.000.000. tersebut, suhu atmosfir bumi akan naik terus karena energi radiasi yang datang dari matahari bertambah panas. Keadaan ini akan menyebabkan es yang ada di kutub utara dan selatan akan mencair yang mengakibatkan tenggelammnya beberapa daratan atau garis pantai akan bergeser ke arah daratan. Kota-kota yang berada di pantai akan tenggelam. Ini baru merupakan bencana awal bagi kehidupan manusia di muka bumi ini. Bencana berikutnya adalah menguapnya semua air yang ada di bumi ini, karena suhu atmosfir bumi makin panas yang pada akhirnya tidak ada lagi air di muka bumi ini. Bumi yang menjadin kering kerontang tanpa air sama sekali dan suhunya yang panas menyebabkan berakhirnya kehidupan di muka bumi ini. Keadaan ini aka terjadi menjelang waktu mendekati 10.000.000.000 tahun yang akan datang. 

Pada saat matahari kehabisan reaktan gas Hidrogen, maka reaksi thermonuklir benar-benar akan berhenti dan ini berarti matahari padam. Matahari yang telah padam ini akan mengeci;l (menyusust) menjadi suatu planet kecil yang dingin membeku yang disebut "White dwarf" atau si kerdil putih yang bukan matahari lagi! Contoh bintang atau planet yang sudah menjadi "white dwarf" di jagat raya ini cukup banyak, salah satunya planet bintang yang pada saat ini sedang menuju kematian seperti yang direkam oleh teleskop ruang angkasa Hubble. Sekali lagi keadaan tersebut akan terjadi 10.000.000.000 tahun yang akan datang. Keterangan ini merupakan jawaban untuk pertanyaan kapan reaksi thermonuklir di matahari berhenti atau matahari padam.

Daftar Acuan :

  1. Wisnu Arya Wardhana, 1996, radioekologi, Andi Offset, Yogyakarta.
  2. Wisnu Arya Wardhana, 2000, Energi Via Satelite Sebuah gagasan untuk Abab 21, Majalah Energi Edisi No. 7, Yogyakarta.
  3. Wisnu Arya Wardhana, 2000, Matahri sebagai Sumber Energi, bahan Ceramah Siaran Interaktif Khasanah Iptek, Radio Bikima, Yogyakarta
  4. Kaplan, Irving, 1979, Nuclear Physiscs, Addison Wesle Inc, London>
  5. The Sun , 1982, New Book Of Popular Science, Volume II, Grolier Inc, USA.
  6. Glasstone, Samuel, 1971, Source Book on Atomic Energy, Van Nostrand, New Jersey.

Vacum Vessel

0 komentar


May 2011: The inside of the JET vessel after having installed the ITER-Like Wall completely. The project will allow researchers at JET to test the interaction of the fusion plasma and the plasma-facing materials, with the same beryllium-tungsten combination that the next-generation ITER tokamak will use. This will provide crucial verification of the performance of these materials for ITER.

Diagram Proses Reaksi Fusi

0 komentar

(klik gambar untuk memperbesar gambar)

Prinsip Tokamak

0 komentar

(klik gambar untuk memperbesar gambar)

Pergerakan Plasma di Dalam Reaktor Tokamak

0 komentar

(klik gambar untuk memperbesar gambar)

Struktur Reaktor Tokamak

0 komentar

Reaktor Mini Hasilkan Fusi Nuklir - Mirip Reaktor yang Dipakai Ironman Kemanapun dia Pergi

2 komentar

Para peneliti di University of California Los Angeles (UCLA) berhasil mendemonstrasikan fusi nuklir dengan sebuah reaktor mini. Seth J. Putterman, salah satu anggota tim peneliti, melaporkan keberhasilan tersebut dalam Jurnal Nature edisi Kamis (28/04).

Eksperimen tersebut diakui sejumlah ilmuwan karena tidak melanggar prinsip-prinsip fisika. "Tidak ada kontroversi, sebab mereka menggunakan metode yang sudah teruji dan benar," kata David Ruzic, profesor teknik nuklir dan plasma dari Universitas Illinois, Urbana-Champaign.

Sebelumnya keberhasilan reaksi fusi nuklir pernah diklaim oleh Dr. B. Stanley Pons dari Universitas Utah dan Martin Fleischmann dari Universitas Southampton. Namun mereka gagal untuk mengulangi keberhasilan klaim fusi dingin pada suhu kamar. Secara teori memang meragukan sehingga klaim tersebut tidak dipercaya.

Proses fusi nuklir sebenarnya meniru proses perubahan energi yang dihasilkan inti matahari. Di dalam inti matahari yang bersuhu 10-15 derajat Celcius, hidrogen diubah menjadi helium sebagai pasokan energi di alam semesta.

Untuk membuat reaksi fusi nuklir, para peneliti menempatkan sepotong kristal lithium tantalate ke dalam ruang hampa udara yang berisi gas deuterium. Kemudian kristal tersebut diaktifkan dengan memanaskannya pada suhu 10 derajat Celcius.

Kristal lithium tantalum adalah material yang berada pada kelompok pyroelectric. Material ini menghasilkan medan listrik yang kuat bila dipanaskan atau didinginkan. Pyroelectric sudah ditemukan sejak 314 sebelum masehi oleh seorang murid Aristoteles.

Medan listrik menimbulkan pancaran atom-atom deuterium yang akan ditabrakkan pada sebuah selembar plastik dengan jarak 2,5 centimeter. Semakin lama semakin banyak deuterium yang melekat. Deuterium yang terus ditembakkan akan bertubrukan kemudian pecah menjadi isotop helium dan partikel-pertikel neutron sebagai pembawa energi. Percobaan ini menghasilkan 1000 neutron per detik. Dengan menaikkan suhu kristal secara bertahap, reaksi fusi akan bekerja selama delapan jam.

Keberhasilan tersebut berpotensi menjadi sumber energi tak terbatas dan ramah lingkungan. Deuterium merupakan ion hidrogen yang dapat diturunkan dari air. Sehingga jumlahnya hampir tak terbatas. Selain itu bahan baku fusi nuklir aman dan tidak menghasilkan pencemaran lingkungan. Reaktor mini bisa menjadi cikal bakal reaktor portabel yang dapat dipakai dalam berbagai peralatan.

sumber: Kompas (Kompas Cyber Media)

Mirip reaktor mini hydrogen plasma yang dipakai ironman. Tidak mustahil bila suatu saat IRONMAN SUNGGUHAN MENGINJAKKAN KAKINYA DI BUKMI INI...

Bermimpilah sepuasmu, dan bersungguh-sungguhlah dalam mencapainya...
Jadilah Ilmuan Muslim yang tegar di atas kebenaran...


Bagi yang punya referensi (baik artikel , thesis, skripsi, desertasi, gambar,dsb) tentang Mini Reactor Hydrogen Plasma mohon kebaikan hatinya untuk mengirimkannya ke email saya di  plasmahydro@gmail.com

Selesai ditulis di Surabaya, pada 17 November 2011
Oleh Supriyono (Cupy Stark)

Inside the World's Largest Fusion Reactor

0 komentar

Inside ITER Graham Murdoch 

The well-publicized failures of cold fusion may have tainted the field’s reputation, but physicists have been successfully joining nuclei with hot fusion since 1932. Today, research in hot fusion could lead to a clean energy source free from the drawbacks that dog fission power plants. Fusion power plants cannot melt down; they won’t produce long-lived, highly radioactive waste; and fusion fuel cannot be easily weaponized.

At the forefront of the effort to realize fusion-based power is ITER, an international collaboration to build the world’s largest fusion reactor. At the heart of the project is a tokamak, a doughnut-shaped vessel that contains the fusion reaction. In this vessel, magnetic fields confine a plasma composed of deuterium and tritium, two isotopes of hydrogen, while particle beams, radio waves and microwaves heat it to 270 million degrees Fahrenheit, the temperature needed to sustain the fusion reaction. During the reaction, the deuterium and tritium nuclei fuse, producing helium and a neutron. In a fusion power plant, those energetic neutrons would heat a structure, called a blanket, in the tokamak and that heat would be used to turn a turbine to produce electricity.

The ITER reactor will be the largest tokamak ever made, producing 500 megawatts of power, about the same output as a coal-fired power plant. But ITER won’t generate electricity; it’s just a gigantic physics experiment, albeit one with very high potential benefits. A mere 35 thousandths of an ounce of deuterium-tritium fuel could produce energy equivalent to 2,000 gallons of heating oil. And ITER’s process is “inherently safe,” says Richard Pitts, a senior scientific officer on the project. “It can never, ever be anything like what you see in the fission world--in Chernobyl or Fukushima--and this is why it is so attractive.”

To fully commercialize tokamak-based fusion, developers must overcome several challenges. First is the matter of breeding the tritium; there are only about 50 pounds of it in the world at any given time because it is not naturally occurring and decays quickly. (Deuterium is not radioactive and can be distilled from water.) Although ITER may use tritium produced by nuclear power plants, a full-scale fusion plant will need to produce its own supply--neutrons from the fusion reaction could be used to convert a stash of lithium into tritium. In addition, physicists must also determine which materials can best withstand the by-products of the fusion reaction, which will wear down the tokamak’s walls. Finally, residual radioactivity in the device will pose maintenance problems because people won’t be able to work safely within the vessel. ITER scientists must develop robots capable of replacing parts that can weigh up to 10 tons.

ITER will begin experiments in 2019 in France. If those are successful, the data produced by the project will aid the ITER team in the design of DEMO, a proposed 2,000- to 4,000-megawatt demonstration fusion power plant that will be built by 2040.


 (Click the above image for more information.)

Fuel

Engineers inject two hydrogen isotopes, deuterium and tritium, into the tokamak, a high-powered doughnut-shaped vacuum chamber.

Plasma

A strong electric current heats the deuterium and tritium gases and ionizes them, forming a ring of plasma, a glowing soup of charged particles.

Heat

Radio waves, microwaves and high-energy deuterium particle beams heat the plasma. At high temperatures, the deuterium and tritium fuse to form a helium atom and a neutron.

Containment

If the plasma touches the walls of the tokamak, it will scuttle the fusion reaction. The charged particle is confined in a magnetic field made from 39 superconducting poloidal, toroidal and central solenoid magnets positioned around the outside of the doughnut and within its hole.

Lining

The vessel is lined with a steel blanket 1.5 feet thick to protect the tokamak walls from highly energetic neutrons.



Tokamak Reactor

0 komentar

The tokamak is the most successful device developed so far to attain the conditions for fusion. It is a toroidal device (shaped like a car tire) in which a vacuum vessel contains a plasma ring confined by twisting magnetic fields.

Note - the word tokamak is an acronym for the Russian words toroidal'naya kamera magnitnoi katushki, meaning toroidal chamber and magnetic coil. 

Tokamak configuration - The transient electric current that circulates in the primary coil of a tokamak induces a current in the plasma ring, which both heats the plasma and produces the poloidal magnetic field. The other important component is the toroidal magnetic field, which is generated by electric currents circulating in the toroidal field coil rings around the torus. In addition, the currents circulating in the position control coils generate auxiliary magnetic field components that modify the poloidal field, equilibrating the plasma ring and controlling its position. It is the combination of toroidal and poloidal magnetic fields that leads to the improved confinement of tokamak plasmas.

 Main components of the tokamak type magnetic confinement system.

Plasma heating - The most efficient way to heat a tokamak plasma is by passing through it a current induced by the primary coil. This coil is the primary circuit of a transformer in which the plasma ring constitutes the secondary circuit. It works like an electric heater, the amount of heat generated depending on the current and the resistance of the plasma. Unfortunately, the plasma resistivity decreases as the temperature rises and the heating process becomes less effective. The maximum temperature that can be achieved in tokamaks by the resistive heating (or ohmic heating) method is about 3×107 K, twice the temperature in the center of the sun but less than needed to startup a reactor, about 108 K. In tokamak experiments auxiliary heating is used to reach temperatures currently as high as 5×108 K (more than 30 times the temperature at the sun-center). The two main methods of additional heating is by the injection of high-energy neutral particle beams and radiofrequency waves of various types.

Selesai ditulis di Surabaya pada 7 November 2011
Oleh Supriyono

Photo - Graphics

0 komentar

Klik photo for more information

Photo - Cooling Systems

0 komentar

Klik photo to more information of Flywheels

Photo - Flywheels

0 komentar

Klik photo to more information of Flywheels

Photo - Inside the Vessel

0 komentar

 
Hi-Tech Hydrogen Plasma © 2011 Theme made with the special support of Maiahost for their cheap WordPress hosting services and free support.